The Physical Underpinning of Security Proofs for Quantum Key Distribution
نویسنده
چکیده
The dawn of quantum technology unveils a plethora of new possibilities and challenges in the world of information technology, one of which is the quest for secure information transmission. A breakthrough in classical algorithm or the development of a quantum computer could threaten the security of messages encoded using public key cryptosystems based on one-way function such as RSA. Quantum key distribution (QKD) offers an unconditionally secure alternative to such schemes, even in the advent of a quantum computer, as it does not rely on mathematical or technological assumptions, but rather on the universality of the laws of quantum mechanics. Physical concepts associated with quantum mechanics, like the uncertainty principle or entanglement, paved the way to the first successful security proof for QKD. Ever since, further development in security proofs for QKD has been remarkable. But the connection between entanglement distillation and the uncertainty principle has remained hidden under a pile of mathematical burden. Our main goal is to dig the physics out of the new advances in security proofs for QKD. By introducing an alternative definition of private state, which elaborates the ideas of Mayers and Koashi, we explain how the security of all QKD protocols follows from an entropic uncertainty principle. We show explicitly how privacy amplification protocol can be reduced to a private state distillation protocol constructed from our observations about the uncertainty principle. We also derive a generic security proof for one-way permutation-invariant QKD protocols. Considering collective attack, we achieve the same secret key generation rate as the Devetak-Winter’s bound. Generalizing an observation from Kraus, Branciard and Renner, we have provided an improved version of the secret key generation rates by considering a different symmetrization. In certain situations, we argue that Azuma’s inequality can simplify the security proof considerably, and we explain the implication, on the security level, of reducing a QKD protocol to an entanglement or a more general private state distillation protocol. In a different direction, we introduce a QKD protocol with multiple-photon encoding that can be implemented without a shared reference frame. We prove the unconditional security of this protocol, and discuss some features of the efficiency of multiple-photon QKD schemes in general.
منابع مشابه
Tight finite-key analysis for quantum cryptography
Despite enormous theoretical and experimental progress in quantum cryptography, the security of most current implementations of quantum key distribution is still not rigorously established. One significant problem is that the security of the final key strongly depends on the number, M, of signals exchanged between the legitimate parties. Yet, existing security proofs are often only valid asympt...
متن کاملSecurity of continuous-variable quantum key distribution against general attacks.
We prove the security of Gaussian continuous-variable quantum key distribution with coherent states against arbitrary attacks in the finite-size regime. In contrast to previously known proofs of principle (based on the de Finetti theorem), our result is applicable in the practically relevant finite-size regime. This is achieved using a novel proof approach, which exploits phase-space symmetries...
متن کاملNo signaling and quantum key distribution.
Standard quantum key distribution protocols are provably secure against eavesdropping attacks, if quantum theory is correct. It is theoretically interesting to know if we need to assume the validity of quantum theory to prove the security of quantum key distribution, or whether its security can be based on other physical principles. The question would also be of practical interest if quantum me...
متن کاملA Necessary Condition for the Security of Coherent- One-Way Quantum Key Distribution Protocol
The coherent-one-way and the differential-phase-shift protocols are two of the most recent practical quantum key distribution protocols for quantum cryptography. These protocols belong to a class of so-called distributed-phase-reference quantum key distribution protocols. While security proofs for some limited attacks exist, the unconditional security proofs this class of protocol remain unreal...
متن کاملApplication of a Process Calculus to Security Proofs of Quantum Protocols
We apply a quantum process calculus to an equivalence proof of quantum key distribution protocols. Whether in classical or quantum cryptography, it is recognized that security proofs tend to be complex and difficult to verify. The use of formal methods is a way to tame such complexity. Quantum process calculi have already been used to model quite simple quantum protocols but not applied to secu...
متن کامل